Overview on Aerosol Typing

Lucia Mona CNR-IMAA, Potenza, Italy

Thomas Holzer-Popp, Ralph Kahn

AEROCOM- Aerosat Workshop Helsinki, Finland October 9-13, 2017

Why this WG?

- The inhomogeneity among satellite aerosol typing schemes decreases fundamental long-term datasets (multi sensors) consistency
- Knowledge of the 4d distribution of the aerosol types at these scales is essential for understanding the impact of the different aerosol sources on climate, precipitation and air quality.
- This information is also needed to help plan the next-generation aerosol emissions policies at continental and global scales and local authorities for hazard (e.g aviation, health, sola plants).

Step 1

Overview of typing procedures

- 21 aerosol typing procedures included in the review
- 15 classify particles in source classes with an interpretative scheme
- 6 stays with the optical observables

Step 1 - Results

- Confusing and misleading nomenclature
- Remote-sensing can provide optical constraints interpreted as particle size, shape, and indices of refraction
- A further interpretative step, entailing additional assumptions, reports particle Source/Chemical Composition
- Validation Data for aerosol type are very limited
- Model simulations and in situ measurements can help

Nomenclature issue

The nomenclature is very heterogeneous among different platforms.

Nomenclature issue

The nomenclature is very heterogeneous among different platforms.

6 main classes could be identified grouping the different nomenclatures.

Optical classification scheme

GB observation + info for source determination allows for clustering observed optical properties respect to the source

Unique "assured" information are ones related to optical measured

properties

Kahn & Gaitley JGR 2015

Satellite retrievals often rely on inferred types

Which were the plans?

- Reference database for aerosol typing (REDAT)
- The idea: collecting a set of measurements from each sensor for each aerosol type.

- A set of pure aerosol components + their mixtures
- Labeled and identified with sensor typing procedures and grouping them in big categories.

REDAT

This set could become a reference dataset for the whole community and will provide opportunities for:

- Comparing typing procedures

(for this we should probably try to start from ground-based measurements, which are limited datasets, and check for satellite matches)

-Providing a reference dataset and a link with the modeling community

(also models typing and outputs could be relevant for this kind of database)

REDAT

- REDAT could provide the opportunity for
☐Finding matching / translating rules (which will be non-unique) between words belonging to a "controlled vocabulary"
☐Providing an indication of typing products reliability
☐Overcoming the "small" dataset limitation
□Construction of a multi-dimensional and multi-platform space of characteristic optical properties

Design

- Indentified needs:
- ☐ Hierarchical structure
- ☐ Flexibility for accommodating substantially different data
- ☐ Pointing to the specific typing algorithm and procedures

REDAT

Status at 2016

EARLINET/ACTRIS Reference dataset

Using published and full characterized data

- 1. CALIPSO- EARLINET dataset
- 2. Eyja volcanic eruption EARLINET dataset
- 3. ACTRIS summer 2012 campaign

1. Pappalardo et al., JGR 2010

2. Pappalardo et al., ACP 2013

3. Sicard et al., AMT 2015

EARLINET/ACTRIS Reference dataset

Total number of cases: 712

Type of aerosols

EARLINET/ACTRIS Reference dataset

Papagiannopoulus et al., in preparation, ACP 2017

Aerosol typing within EARLINET/ACTRIS

A lidar stand-alone procedure has been realized in harmonization efforts with aerosol typing from HSRL lidar in US.

Method:

a distance-based multivariate analysis depending only on lidar intensive properties [Burton et al., 2012].

The method is set up using a training dataset and then results of the method are compared vs manual typing of the data (backtrajectories analysis + model inputs + satellite images).

Aerosol typing within EARLINET/ACTRIS

Aerosol typing in EARLINET/ACTRIS

Different procedures within EARLINET ACTRIS:

This stand-alone method

Neural network based on observations trained on real data and modelled data

Cluster identification based on obs +models

Comparisons for improving reliability knowledge

Aerosol typing in EARLINET/ACTRIS

Next steps:

- ACTRIS aerosol remote sensing data will be automatically processed through GARRLIC (a GRASP component)
- A further link/ contact point between pure observations and modeling component

Discussion AEROSAT 2016

 REDAT has the potentiality for addressing our Open Questions on aerosol type.

• Difficulties to work on this - voluntary basis

CNR volunteered for working on EARLINET data for Table 2

Suggestions to stay only at the inventory step

Future plans - 2018

 Drafting a BAMS like paper about the issue of aerosol typing (focus on inventory + nomenclature)

(Michael suggestion)

2. Made inventory available (first to AEROSAT members for review and then externally – hosted by CNR)

3. Working on first exercise for comparison/translating rules

Future plans - 2018

NEED: set up a core group.

Lucia and Ralph, Thomas, Kostas who else?

- 1. + Michael?
- 2. + contact person for each typing procedure
- 3. + US component for GB (HSRL)+ in situ people (AERONET + ACTRIS/EMEP/GAW) + satellite (CALIPSO MISR POLDER MODIS)