### Discussion on Satellite Model Interactions

AeroSat Workshop 2015
European Space Agency
Frascati
08/10/2015

Philip Stier
Climate Processes Group
Department of Physics
University of Oxford









## Uncertainties in satellite data

#### General:

- 1) Retrieval/measurement/calibration uncertainties
- 2) Sampling uncertainties (spatial and temporal)
- 3) Vertical distribution
- 4) Correct understanding (and application) of errors and error flags
- 5) Understanding of physical properties (type, absorption, ccn)

#### Specific for aerosol cloud interactions:

- 6) Co-location of aerosol and cloud data in 2D and 3D (links to 2)
- 7) Disentangling effects from meteorological covariability





## Uncertainties in satellite data

#### General:

- 1) Retrieval/measurement/calibration uncertainties
- 2) Sampling uncertainties (spatial and temporal)
- 3) Vertical distribution
- 4) Correct understanding (and application) of errors and error flags
- 5) Understanding of physical properties (type, absorption, ccn)

#### Specific for aerosol cloud interactions:

- 6) Co-location of aerosol and cloud data in 2D and 3D (links to 2)
- 7) Disentangling effects from meteorological covariability





# Suitability of AOD as proxy for CCN

Correlation of 6h CCN and AOD from global aerosol model ECHAM-HAM with fully self-consistent calculation:













# Suitability of AOD as proxy for CCN

Correlation of 6h CCN and **surface level AOD** from self-consistent global aerosol model ECHAM-HAM:



Information about vertical structure (and size) key





# Case study: aerosol effects on precipitation?

Difference in **TRMM** rainrate between high and low **MODIS AOD** 





Difference in **HadGEM** GCM rainrate between high and low AOD



R (mm  $h^{-1}$ )

Scavenging signature found in GCMs but not in satellite data







# Sampling Issues: Non-Coincidence

Composite of WRF-Chem simulated convective systems



Issue: AOD scavenging signal concentrated in areas with high cloud fraction – poorly sampled by satellites





# Sampling Issues: Non-Coincidence

GCMs initially separate clear and precipitating fractions:







# Sampling Issues: Non-Coincidence

GCMs average grid-box at the end of each timestep...



GCM grid - low bias





## AeroSat Discussion

- Need to understand errors of retrievals
- Need to understand what has not been retrieved (and why)
   This is key to avoid sampling biases
- Satellite simulators can help to avoid these issues
- Currently the analysis of representativeness (e.g. of AOD/AI for CCN) happens mostly on the user side
- Large domain CRM/LES simulations including aerosols provide new opportunities to test representativeness



# **AeroCom Remote Sensing**

AeroCom model evaluation against a large suite of remote sensing observations







Standard Deviation







### Community Intercomparison Suite

#### Open source python toolbox to efficiently intercompare data

- Generic tool for analysing, visualising and **colocating** datasets
- Handling of complex gridded and **ungridded** data in many formats
- Simple command line syntax with many options
- Flexible approach through plug-ins, e.g. for new data sources
- Open source software & deployed for community use on JASMIN









### Community Intercomparison Suite

#### Colocation



#### **Colocation method:**

- 1. Specify searchbox
  - Horizontal distance
  - Vertical distance
  - Time separation
- 2. Specify operation
  - Nearest neighbour (time)
  - Nearest neighbour (space)
  - Average
  - User plug-in

CIS col <native file> <native variable>:<native file>:<colocation method> -o <file>



This file provides the new spatio-temporal sampling



This file provides the data that will be resampled



Nearest neighbour or linear interpolation



Output (netcdf)







Soon: www.cistools.net





### Community Intercomparison Suite







