#### Level-2 AOD median from multiple satellite sensor retrievals

Charles Ichoku, Xiaohua Pan, Maksym Petrenko, Hongbin Yu, and Mian Chin
NASA Goddard Space Flight Center, Greenbelt, MD, USA



GEOS5 nature run for a given time, depicting different aerosol types with different colors Presented at the 14<sup>th</sup> AEROCOM/3<sup>rd</sup> AEROSAT Workshop, 5-9 October 2015, ESA-Esrin, Frascati, Italy

## **Outline**

- Spatio-temporal Challenges of Aerosol Inter-comparison between Satellite observations and Model simulations
- > The MAPSS aerosol data sampling/analysis system
- > Lessons from Multi-sensor Coherent Uncertainty Analyses
- > Toward Multi-sensor Data Synergy: Level 2 AOD Median
- Future Possibilities (Suggestions very welcome)

±30 minute MODIS Terra swath cutouts for evaluation of 3-hour model snapshots on 2008-08-22



Single product poor coverage, even whole day is not optimal spatially/temporally

# Combined swath cutouts from MODIS Aqua&Terra, MISR, OMI, SeaWiFS, and POLDER



Combined product, a little improved, but still same issues, plus sampling dilemma

## Global monthly AOD for August 2007



Monthly averages, improved coverage, but less useful for diagnosing models



- Aerosol data are available from different sensors
  - AERONET
  - MODIS
  - MISR
  - OMI
  - POLDFR
  - CALIOP
  - SeaWiFS
  - VIIRS
- Hard to compare and inter-validate
  - Different spatial and temporal resolution
  - Different dataaccess strategies



## MAPSS: Multi-sensor Aerosol Products Sampling System



- MAPSS uniformly samples Level-2 aerosol products and stores resulting statistics in simple CSV files
- Giovanni-based
   WEB interface for
   MAPSS provides a
   convenient
   customized access
   to the data, with
   on-line plotting
   and data export
   capabilities

Petrenko et al., 2012, AMT

#### MAPSS (Multi-sensor Aerosol Products Sampling System)

http://giovanni.gsfc.nasa.gov/mapss/

#### **MAPSS: Multi-sensor Aerosol Products Sampling System**

This user interface is used to obtain selected parameter statistics from the MAPSS database for a chosen location and time period. Time Series Plot is the available service. Plot output is rendered as a graph and is also available in ASCII format.



#### **Comparative Accuracy of spaceborne AOD retrievals**



- Satellite data sampled within 55-km diameter circles centered over AERONET stations
- AERONET data sampled within ±30 minutes of each overpass of the satellites
- Space-borne AOD
   uncertainty metrics
   computed on the basis of
   comparison with
   AERONET data

**Reference:** Petrenko, M. and Ichoku, C.: Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors, Atmos. Chem. Phys., 13, 6777-6805, doi:10.5194/acp-13-6777-2013, 2013.

#### **MAPSS-Explorer**

http://giovanni.gsfc.nasa.gov/mapss\_explorer/



# Relative Performance of Satellite Aerosol Products at AERONET locations

Sensors providing the best R<sup>2</sup> of AOD over land at 382 AERONET stations, at all seasons (outliers removed)



#### Relative Performance of Satellite Aerosol Products by Landcover Type

Measures of accuracy (e.g. R<sup>2</sup>) by Land-cover Type



#### Lessons from coherent uncertainty analysis

#### **Results and Summary**

| IGBP land cover type             | Most adapted products                             |
|----------------------------------|---------------------------------------------------|
| Water                            | MODIS, MISR, and SeaWiFS                          |
| Evergreen needleleaf forest      | MODIS and MISR                                    |
| Evergreen broadleaf forest       | POLDER, MISR, and MODIS                           |
| Deciduous broadleaf forest       | MODIS and MISR                                    |
| Mixed forests                    | MODIS and MISR                                    |
| Closed shrubland                 | MISR, CALIOP, MODIS Deep Blue                     |
| Open shrublands                  | All sensors have R <sup>2</sup> <0.7              |
| Woody savannas                   | MODIS Dark Target, MODIS Deep Blue, MISR, SeaWiFS |
| Savannas                         | MODIS, SeaWiFS, MISR, POLDER                      |
| Grasslands                       | All sensors have R <sup>2</sup> <0.7              |
| Permanent wetlands               | MODIS and MISR                                    |
| Croplands                        | MODIS and MISR                                    |
| Urban and built-up               | MISR                                              |
| Cropland / natural veget. mosaic | MODIS, MISR, and SeaWiFS                          |
| Snow and ice                     | MISR                                              |
| Barren or sparsely vegetated     | MISR                                              |

- Accuracy varies with land-cover type, but no product is accurate across all regions
- Each product has unique features that make it advantageous in certain regions
- Certain land-cover types are problematic for all products, e.g., open shrublands and grasslands

# What satellite aerosol product to use for modeling and other Applications?

One that combines the best of all available aerosol products wherever and whenever they occur.

## **Challenge**

How to derive a unique product that is an embodiment of the best the satellites can offer?

## **Exploring AOD Median at Selected Locations**



## **Preliminary Method for Median Estimation**

 Step 1: Extract spatial mean or median of each satellite product from MAPSS:

This is mean or median of pixels within the 55-km diameter sample space centered at each AERONET station.

 Step 2: Determine the median of the above parameters for all available satellite AOD products:

This is median of all available satellite AOD spatial mean or median values within a pre-determined sample bin size (e.g. 20), which is adjustable.

#### Using MAPSS mean, bin size = 20

## **GSFC**

GSFC 2008(mean,best-QA,filter=20)



- AERONET
- ♦ MYD04 L2 051
- △ MYD04 L2 006
- ▼ MYD04 3K 006
- × MIL2ASAE 0022
- + OMAERUV 003
- □ CALIOP 05kmALay 3
- Satellites Median

corr: correlation

**bias**: relative bias.  $\Sigma$ satellite >  $\Sigma$ AERONET, if > 1.

rmse: root mean square error

#all: number of points with valid data

#### Using MAPSS median, bin size = 20

## **GSFC**

GSFC 2008(median,best-QA,filter=20)



AERONET

♦ MYD04 L2 051

△ MYD04\_L2\_006

MYD04\_3K\_006

× MIL2ASAE 0022

+ OMAERUV 003

CALIOP 05kmALay 3

- Satellites Median

corr: correlation

**bias**: relative bias.  $\Sigma$ satellite >  $\Sigma$ AERONET, if > 1.

rmse: root mean square error

#all: number of points with valid data

#### Using MAPSS mean, bin size = 20

## Bratts\_Lake

Bratts\_Lake 2008(mean,best-QA,filter=20)



AERONET

♦ MYD04 L2 051

△ MYD04 L2 006

MYD04\_3K\_006

× MIL2ASAE 0022

+ OMAERUV 003

CALIOP 05kmALay 3

Satellites Median

corr: correlation

**bias**: relative bias.  $\Sigma$ satellite >  $\Sigma$ AERONET, if > 1.

rmse: root mean square error

#all: number of points with valid data

#### Using MAPSS median, bin size = 20

## Bratts\_Lake

Bratts Lake 2008(median,best-QA,filter=20)





♦ MYD04 L2 051

△ MYD04\_L2\_006

MYD04\_3K\_006

× MIL2ASAE 0022

+ OMAERUV 003

CALIOP 05kmALay 3

Satellites Median

corr: correlation

**bias**: relative bias.  $\Sigma$ satellite >  $\Sigma$ AERONET, if > 1.

rmse: root mean square error

#all: number of points with valid data

#### Using MAPSS mean, bin size = 20

## Monterey

Monterey 2008(mean,best-QA,filter=20)





♦ MYD04 L2 051

- MYD04 3K 006
- × MIL2ASAE 0022
- + OMAERUV 003
- CALIOP 05kmALay 3
- Satellites Median

corr: correlation

**bias**: relative bias.  $\Sigma$ satellite >  $\Sigma$ AERONET, if > 1.

rmse: root mean square error

#all: number of points with valid data

<sup>△</sup> MYD04 L2 006

#### Using MAPSS median, bin size = 20

## Monterey

Monterey 2008(median,best-QA,filter=20)





△ MYD04 L2 006

▼ MYD04 3K 006

× MIL2ASAE 0022

+ OMAERUV 003

CALIOP 05kmALay 3

- Satellites Median

corr: correlation

**bias**: relative bias.  $\Sigma$ satellite >  $\Sigma$ AERONET, if > 1.

rmse: root mean square error

#all: number of points with valid data



## **Conclusions**

- There is considerable disagreement in AOT (level 2) between different satellite sensors/algorithms
- Multi-sensor synergy can help restore harmony and improve understanding in aerosol loading and impacts
- We are currently evaluating viable options for combining different products to get the best consensus satellite-based AOT
- Such consensus product can be of significant benefit for model evaluation, and hopefully provide a consistent satellite-based long-term aerosol climate data record across multiple satellite generations.

## Acknowledgement

- NASA HQ Program Managers:
  - Hal Maring
  - Martha Maiden
  - Steve Berrick
  - Kevin Murphy

For tag-team Funding support of this series of aerosol projects.

- Aerosol PI Teams
  - AERONET: Brent Holben, David Giles, Ilya Slutsker
  - MODIS: Lorraine Remer, Rob Levy
  - MISR: Ralph Kahn
  - OMI: Omar Torres
  - POLDER: Didier Tanre, Fabrice Ducos, Jacques Descloitres
  - CALIOP: Dave Winker, Ali Omar
  - SeaWiFS: Christina Hsu
  - GOCART Model: Mian Chin
  - GEOS-5: Arlindo da Silva

## **Functions and Web Sites**

GIOVANNI — Level 3 Earth Science Data Visualization and Analysis

http://giovanni.gsfc.nasa.gov/giovanni/

MAPSS — Level 2 Aerosol Point Sampling: Timeseries & Spreadsheet

http://giovanni.gsfc.nasa.gov/mapss/

MAPSS\_Explorer — Level 2 Aerosol uncertainty analysis over AERONET sites

http://giovanni.gsfc.nasa.gov/mapss\_explorer/

AeroStat — Level 2 Aerosol Point Sampling: Scatterplots & Statistics

http://giovanni.gsfc.nasa.gov/aerostat/