

Aerosol typing (WG 5)

Introduction / seed questions

(with Lucia Mona / WG lead)

Aerosol type

- → ... is a categorial / qualitative variable
- ... is input needed for (ill-posed) retrievals / affects accuracy (AOD ...)
- ... is estimated from ground-based data (sampling!) and model climatologies
- ... is output from retrievals to some extent (AERONET, satellite)
- Different instruments
 - ... need different definitions
 - ... have different / limited information content for aerosol type

Aerosol typing

Aerosol typing procedures differ in many aspects:

- approach
- nomenclature (e.g. same name for different definitions)
- assumed number of components (e.g. TOMS: 3 MISR: 74)
- parameters used for the classification
- **≻**Particle size
- **≻**Particle shape
- **≻**Absorbing properties
- **≻**Aerosol load
- **>**Location
- > Seasonal behavior
- approach
- by source (e.g. dust, sulfates)
- **>** by optical properties (e.g. aspherical, absorbing)

Examples

WEAKLY ABSORBING Fine (<1μm)

MODERATL Y ABSORBING STRONGLY ABSORBING Coarse (>1µm)

COARS

CALIPSO

non-depolarizing

high aerosol content POLLUTED CONTINENT AL

SMOKE

CLEAN MARIN

CLEAN CONTINENT AL depolarizing

DUST

POLLU TED

over the Sea

small aerosol content

Questions?

What is needed?

- review of aerosol typing assumptions
- harmonization of the nomenclatures
- harmonization of the procedures

Long-term perspectives (WG2) Validation (WG3)

Improved accuracy(WG4)

Can / we find one overarching nomenclature? Do we see a need / benefit in it?

Critical points

- how realistic is an overarching common definition of aerosol types?
- GB communities (e.g. AERONET, EARLINET, in situ) also have different procedures for the typing, even in the same network
- the 2013 IPCC report classification mainly relies on near-surface typing

Simple aerosol typing in Aerosol_cci

Simple concept

- 4 basic components
- Reflects theoretical information content
- Texternal mixtures with 3 mixing fractions
- Evaluation ongoing of information content
- Output (easier to validate / compare)
 - Fine mode AOD (fine mode / total mixing fraction)
 - → Dust AOD (dust / total coarse mode mixing fraction)
 - → [AAOD (absorption fraction in fine mode)]

4 aerosol components

aerosol	Refr. index, real part (55µm)	Refr. Index, imag part (.55µm)	reff (μm)	geom. st dev (σ_i)	varianc e ($\ln \sigma_i$)	mode. radius (µm)	comments	aerosol layer height
Dust	1.56	0.0018	1.94	1.822	0.6	0.788	non- spherical	2-4km
sea salt	1.4	0	1.94	1.822	0.6	0.788	AOD threshold constraint	0-1 km
fine mode weak-abs	1.4	0.003	0.140	1.7	0.53	0.07	(ss-albedo at 0.55 μm: 0.98)	0-2 km
fine mode strong-abs	1.5	0.040	0.140	1.7	0.53	0.07	(ss-albedo at 0.55 μm: 0.802)	0-2 km

esaAOD mixing (fractions) from AEROCOM

Fraction of dust in the coarse mode

Fraction of the less absorbing component in the fine mode

lnformation content analysis (SYNAER/SCIA)

A tool to identify systematically strengths and limitations

DOF as $f(AOD, \theta_0)$

PCA weights a and 2